skip to main content


Search for: All records

Creators/Authors contains: "Yates, Martin G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A large volcanic sulfate increase observed in ice core records around 1450 C.E. has been attributed in previous studies to a volcanic eruption from the submarine Kuwae caldera in Vanuatu. Both EPMA–WDS (electron microprobe analysis using a wavelength dispersive spectrometer) and SEM–EDS (scanning electron microscopy analysis using an energy dispersive spectrometer) analyses of five microscopic volcanic ash (cryptotephra) particles extracted from the ice interval associated with a rise in sulfate ca. 1458 C.E. in the South Pole ice core (SPICEcore) indicate that the tephra deposits are chemically distinct from those erupted from the Kuwae caldera. Recognizing that the sulfate peak is not associated with the Kuwae volcano, and likely not a large stratospheric tropical eruption, requires revision of the stratospheric sulfate injection mass that is used for parameterization of paleoclimate models. Future work is needed to confirm that a volcanic eruption from Mt. Reclus is one of the possible sources of the 1458 C.E. sulfate anomaly in Antarctic ice cores.

     
    more » « less
  2. Abstract

    The Prydz Bay coast, including the Larsemann Hills, features relatively extensive bedrock exposures of interest because of the proximity to a hypothesized suture associated with Gondwana assembly. Critical units are the basement Søstrene Orthogneiss (1,126 ± 11 Ma protolith) and cover Brattstrand Paragneiss (maximum depositional age 1,023 ± 19 Ma). The two units share a polymetamorphic history with events at ~900 Ma (D1) and ~530 Ma (D2‐4). Here we present electron microprobe dates of monazite growth zones and Perple_X pseudosection models of granulite‐facies rocks from the Søstrene Orthogneiss, Brattstrand Paragneiss, and D2‐4pegmatites of the Larsemann Hills. We propose a scenario for Cambrian metamorphism involving a peak stage at 6–7.5 kbar and 800–860°C (D2convergence), melt crystallization and garnet breakdown during decompression to early retrograde conditions of 3–4.5 kbar and 700–750°C (D2convergence, D3extension), and a late retrograde stage with decompression and cooling to 3–3.5 kbar and 550–650°C (D4). We combine monazite chemistry with phase assemblages predicted by pseudosection modelling to link specific monazite growth domains to individual tectonic stages. Monazite domains containing moderate Th and low to moderate Y are interpreted to be preserved from the prograde path when garnet was stable, and constrain the timing of prograde metamorphism at 536 ± 4 Ma. High‐Th, low‐Y domains, dated at 527 ± 2 Ma, represent the earliest stages of post‐peak melt crystallization. Monazite domains with elevated Y and low‐moderate Th are interpreted to represent monazite growth during garnet breakdown at 514 ± 2 Ma. Our monazite ages, combined with published biotite Ar–Ar cooling ages, yield a two‐stage history of cooling at 3–8°C/Myr from ~530 Ma to ~510 Ma followed by cooling at 18–25°C/Myr from ~510 Ma to ~490 Ma, corresponding to 0.2–0.6 mm/yr of exhumation. This duration of granulite‐facies metamorphism in the Larsemann Hills is consistent with estimates for Precambrian granulite facies metamorphic complexes elsewhere.

     
    more » « less